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SUMMARY
This paper addresses the neural network (NN) output feedback formation tracking control of non-
holonomic wheeled mobile robots (WMRs) with limited voltage input. A desired formation is
achieved based on the leader–follower strategy utilizing hyperbolic tangent saturation functions to
reduce the risk of actuator saturation. The controller is developed by incorporating the high-gain
observer and radial basis function (RBF) NNs using the inverse dynamics control technique. The
high-gain observer is introduced to estimate velocities of the followers. The RBF NN preserves the
robustness of the proposed controller against uncertain nonlinearities. The adaptive laws are also
combined by a robust control term to estimate the weights of RBF NN, approximation errors, and
bounds of unknown time-variant environmental disturbances. A Lyapunov-based stability analysis
proves that all signals of the closed-loop system are bounded, and tracking errors are uniformly ulti-
mately bounded. Finally, some simulations are carried out to show the effectiveness of the proposed
controller for a number of WMRs.

KEYWORDS: Actuator saturation; Adaptive robust control; High-gain observer; Leader– follower
formation; Radial basis function neural network; Wheeled mobile robots.

1. Introduction
The motion control of wheeled mobile robots (WMRs) is an attractive research area due to the
challenging theoretical nature of underactuated systems. Over the last few years, the cooperative
and formation control of multiple autonomous mobile vehicles has been a subject of considerable
research efforts due to the redundancy, robustness, and efficiency of vehicle teamwork with respect
to a single robot. The formation control of wheeled mobile vehicles can be efficiently employed
in various applications, such as the exploration, surveillance, security patrols, search, rescue, and
various military missions. Various control strategies for mobile robot formations can be divided into
three major approaches, namely behavior-based formation control,1, 2 virtual structure method,3, 4 and
leader–follower approaches.5, 6 Among them, the leader–follower architecture has been widely used
due to its simplicity, scalability, and reliability.

One of the pioneering leader–follower-based controllers was introduced by Desai et al. in 1998.7

Most of the current researches based on this approach only considered the kinematic model of mobile
robots, which require the perfect velocity tracking assumption.8, 9 It is noteworthy that the controller
design based on a kinematic model has an acceptable performance only at low speeds and when the
robot is not under high loads. Hence, many leader–follower formation control design methods10–13

considered the nonlinear dynamical model to improve the performance of the controller. As shown in
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ref. [14], a traditional model-based adaptive controller was designed using the inverse dynamics tech-
nique for a single WMR. However, it is generally useful only for systems in which the dynamics are
linear-in-parameters. Just as described in refs. [10–13], the proposed approximation-based control
techniques, such as fuzzy, neural network (NN), optimal, model predictive, and robust controllers,
were developed to compensate functional uncertainties and unknown time-varying environmental
disturbances. It should be pointed out that most of the previously presented controllers require veloc-
ity measurements of all agents that are not easily measurable because of noise contamination and
communication delays. Moreover, from a practical viewpoint, velocity sensors like tachometers may
increase the implementation cost and weight of the system. One powerful solution to leave out veloc-
ity sensors is the design of output feedback controllers. Towards this end, the output feedback control
schemes were designed for mobile robots in different works, including refs. [15–23], which is very
demanding due to the nonholonomic constraints. Furthermore, the existence of parametric and non-
parametric uncertainties in the kinematic and dynamic models of mobile robots makes this problem
more challenging. In ref. [15], an output feedback controller was developed for the dynamic model of
a unicycle-type mobile robot using a coordinate transformation in order to cancel the velocity cross
terms in the WMR dynamics. It was, however, assumed that all parameters must be known. In refs.
[19–23], the output feedback formation controllers were proposed in the presence of model uncer-
tainties. Besides the previous works, the high-gain observer technique, which was first proposed by
Khalil et al. in ref. [24], has evolved into an important tool to reach the output feedback control of
uncertain nonlinear systems.25, 26 It can estimate the time derivatives of the system output by properly
adjusting gains of the proposed observer. The actuator input constraint is also one of the major prob-
lems that occur in the control of actuated dynamic systems. Most of the presented works, including
output feedback controllers,15–23 assume that WMR actuators are capable of accepting every level
of voltage signals. The main challenge usually arises when a large amplitude of the control signal
is required to obtain a good tracking performance of hard reference trajectories, which can cause
saturation of actuators. Therefore, it may lead to serious physical damages, thermal or mechanical
damages of robot actuators. This problem can be alleviated by employing saturation functions to the
design of tracking controller. Motivated by the above literature review, main contributions of this
paper are stated as follows:

(i) In this paper, a neural adaptive output feedback linearizing formation control of WMRs is
addressed for the first time. Compared with many previous works,1–23 our proposed track-
ing controller does not require velocity measurements for real implementations by designing
a high-gain observer.

(ii) In contrast to previously proposed controllers,15–23 our presented output feedback formation
controller takes the input constraint into account. For this purpose, the hyperbolic tangent satu-
ration function is applied to the design of the inverse dynamic controller in order to bound the
tracking error variables.

(iii) The proposed controller retains its robustness against uncertain parameters, external distur-
bances, and frictions by incorporating an RBF NN and an adaptive robust controller.

A Lyapunov-based stability analysis was used to prove that all signals in the closed-loop sys-
tem are bounded and the position tracking errors are uniformly ultimately bounded (UUB). Finally,
simulation results are provided for a number of WMRs to illustrate the efficiency of the proposed
controller.

The rest of the paper is organized as follows. In Section 2, the problem statement is presented. In
Section 3, main results of this paper, including the proposed adaptive robust neural output feedback
formation controller design and its stability analysis, are presented. In Section 4, some numerical
simulations are provided to evaluate the controller performance. Finally, conclusions are given in
Section 5.

2. Problem Statement

2.1. Notations
Throughout this paper, ‖x‖ := √

xTx is used as the Euclidean norm of a vector x ∈ �n, while the
induced norm of a matrix A ∈ �n×m is defined as ‖A‖ :=√

λmax{ATA}. The matrix In denotes
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Fig. 1. A planar illustration of the WMR.

n-dimensional identity matrix. λmin(•) and λmax(•) denote the smallest and largest eigenvalues of a
matrix, respectively. To facilitate control design and stability analysis, the following notations are also
used: Tanh(pi) = (tanh(p1i), . . . , tanh(pni))

T and Sech2(pi) = diag(sech2(p1i), . . . , sech2(pni)),
where pi = (p1i, p2i, . . . , pni)

T ; diag(•) denotes a diagonal matrix; tanh(•) and sech2(•) = 1/

cosh2(•) are hyperbolic tangent function and its derivative, respectively. Furthermore, the subscript i
is used to represent the number of each follower in the group.

2.2. WMR model description
Consider a team of N identical nonholonomic unicycle-type mobile robots whose dynamic model is
described, as follows, for ith robot according to Fig. 1:27

ṗi = Gi(pi)vi(t), i = 1, 2, . . . , N (1)

Mi(pi)p̈i + Ci(pi, ṗi)ṗi + Bi(pi)Fi( ṗi) + Bi(pi)τdi = Bi(pi)τi − AT
i (pi)λi (2)

The posture of the ith robot is specified by pi = (xi, yi, ϕi)
T , where (xi, yi) denotes the actual Cartesian

position for the front of the robot and ϕi is the heading angle. vi(t) = (v1,i(t), v2,i(t))T is made up of
linear and angular velocities, respectively. Under the hypothesis of pure rolling and nonslipping con-
ditions, each vehicle satisfies the nonholonomic constraint Ai(pi)ṗi = 0, where Ai(pi) ∈ �1×3.28 The
full rank rotation matrix Gi(pi) ∈ �3×2 consists of smooth and linearly independent vector fields that
are in the null space of Ai(pi), such that Ai(pi)Gi(pi) = 0. Moreover, Mi(pi) ∈ �3×3 is a symmetric
positive definite inertia matrix, Ci(pi, ṗi) ∈ �3×3 is the centripetal and Coriolis matrix, Bi(pi) ∈ �3×2

is the input transformation matrix, Fi( ṗi) ∈ �2×1 denotes the friction vector, τdi ∈ �2×1 denotes the
bounded unknown disturbances, τi ∈ �2×1 is the torque vector that is generated by wheel actuators,
and λi ∈ � is Lagrange multiplier that denotes constraint forces. The model matrices are defined as
follows:

Gi(pi) =
⎛
⎝ cos ϕi 0

sin ϕi 0
0 1

⎞
⎠, Ci(pi, ṗi) =

⎛
⎝0 0 mcidiϕ̇i cos ϕi

0 0 mcidiϕ̇i sin ϕi

0 0 0

⎞
⎠, Bi(pi) = 1

ri

⎛
⎝ cos ϕi cos ϕi

sin ϕi sin ϕi

bi −bi

⎞
⎠

Mi(pi) =
⎛
⎝ mi 0 mcidi sin ϕi

0 mi −mcidi cos ϕi

mcidi sin ϕi −mcidi cos ϕi Ii

⎞
⎠, Ai(pi) = ( sin ϕi − cos ϕi 0 )

(3)

where mi = mci + 2mwi and Ii = Ici + 2Imi + mcid2
i + 2mwib2

i and all robot parameters are defined in
Table I. To include actuator dynamics in (2), it is assumed that the robot wheels are driven by two sim-
ilar brush DC motors with mechanical gears.14 The dynamic model of DC motors can be represented
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Table I. Definitions of WMR parameters and variables.

Parameter/variable Description

ri Radius of each driving wheel
2bi Distance between two diving wheels of the robot
di Distance between the center of mass Pci of the robot and middle point P0i

mci Mass of the platform without the driving wheels and the rotors of DC motors
mwi Mass of each driving wheel plus the rotor of its motor
Ici Moment of inertia of the platform without the driving wheels and the

rotors of the motors about a vertical axis through Pci

Imi Moment of inertia of each wheel and the motor rotor about a wheel diameter
Kτ i Matrix of motor torque constants
Rai Matrix of armature circuit resistance
Lai Matrix of armature circuit inductance
Kbi Matrix of back electromotive force constant
ni Gear box ratio
τmi ∈ �2 Vector of torques generated by DC motor
iai ∈ �2 Vector of armature current
uai ∈ �2 Motor input voltage vector
θ̇mi Angular velocity of the DC motor

by τmi = Kτ iiai and uai = Lai diai/dt + Rai
iai + Kbiθ̇mi , where all parameters and variables are shown

in Table I. By ignoring armature inductance and considering relations between torque and velocity
before and after gears θ̇mi = niθ̇i and τi = niτmi , the delivered torque to WMR wheels by the actuators
is given by τi = K1iuai − K2iθ̇i, where K1i = niKτ i/Rai and K2i = niKbiK1i are actuator parameters. By
considering a transformation matrix XTi ∈ �2×2 that transforms wheel velocity to pseudo-velocity
vector, the input torque vector can be rewritten as:

τi = K1iuai − K2iXTi vi (4)

After substituting (4) into (2), one obtains:

Mi(pi)p̈i + Ci(pi, ṗi)ṗi + Bi(pi)Fi( ṗi) + Bi(pi)τdi = Bi(pi)(K1iuai − K2iXTi vi) − AT
i (pi)λi (5)

By differentiating (1), one obtains p̈i = Ġi(pi)vi + Gi(pi)v̇i, which is replaced in (5); then, by
multiplying both sides of (5) by GT

i (pi), the following dynamic equation is achieved:

M̄i(pi)v̇i(t) + C̄i(pi, ṗi)vi(t) + F̄i( ṗi) + τ̄di = K1iB̄i(pi)uai, (6)

where M̄i(pi) = GT
i MiGi, C̄i(pi, ṗi) = GT

i MiĠi + GT
i CiGi + K2iB̄iXTi , B̄i(pi) = GT

i Bi, F̄i( ṗi) = B̄iFi

and τ̄di = B̄iτdi , which are defined as follows:

M̄i(pi) =
(

mi 0

0 Ii

)
, C̄i(pi, ṗi) =

(
2K2i

/
r2

i mcidiϕ̇i

−mcidiϕ̇i 2b2
i K2i

/
r2

i

)
, B̄i(pi) =

(
1/ri 1/ri

bi/ri −bi/ri

)
(7)

Property 1: The bounding functions ‖Gi(pi)‖ ≤ g1i, m̄1i ≤ ‖M̄i(pi)‖ ≤ m̄2i, ‖C̄i(pi, ṗi)‖ ≤
c̄1i‖vi‖, ‖τ̄di‖ ≤ τ̄1i, and ‖F̄i( ṗi)‖ ≤ f̄1i + f̄2i‖vi‖ are valid for the presented kinematic and dynamic
models of nonholonomic robots, where g1i, m̄1i, m̄2i, c̄1i, τ̄1i, f̄1i, and f̄2i are positive scalar constants.29

2.3. State space representation
The kinematic model (1) and dynamic equation (6) may be combined into the following state space
representation in companion form:

ẋi =
(

ṗi

v̇i

)
=

(
Gi(pi)vi

0

)
︸ ︷︷ ︸

fi(xi)

+
(

0
−M̄−1

i C̄i(pi, ṗi)vi

)
︸ ︷︷ ︸

qi(xi)

+
(

0
k̄1iM̄

−1
i B̄i

)
︸ ︷︷ ︸

gi(xi)

uai+
(

0
−M̄−1

i (F̄i( ṗi) + τ̄di)

)
︸ ︷︷ ︸

�i(xi)

,

(8)
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Fig. 2. A leader–follower formation control scheme.

where xi = (pT
i , vT

i )T ∈ �5 is the state vector, and fi(xi), qi(xi), gi(xi), �i(xi) ∈ �5 are smooth vector
fields with gi(0) �= 0 for holding the controllability of the system. The trajectory tracking problem
will be solved by applying differential geometric control theory based on this representation.

2.4. Control objectives and mathematical preliminaries
Definition 1. [30] The solutions of ẋ = f (t, x) are said to be UUB, if there exist positive constants

b and c, independent of the initial condition t0 ≥ 0 and for every a ∈ (0, c), there is a time tf ≥ 0
independent of t0 such that if ‖x(t0)‖ ≤ a, then ‖x(t)‖ ≤ b, for all t ≥ t0 + tf .

Definition 2. Given a smooth bounded reference trajectory pd(t) = (xd, yd, ϕd)
T , which is gener-

ated by an open-loop motion planner called the virtual leader robot and satisfies the nonholonomic
constraints, that is, A(pd)ṗd = 0, the control objective of this paper is to design the voltage control
input vector uai for ith follower under the following requirements:

(i) Follower i tracks the virtual leader such that lim
t→∞

∣∣ρi(t) − ρd
i (t)

∣∣< ερ and lim
t→∞

∣∣θi(t) − θd
i (t)

∣∣<
εθ where ρi(t) and θi(t) are the range and relative angle of ith follower with respect to the virtual
leader, respectively, which are obtained by sensor measurements. ρd

i (t) and θd
i (t) introduce their

desired values, respectively, which are commanded by the user (see Fig. 2). The terms ερ and
εθ are arbitrary small positive constants. Therefore, the tracking error ei(t) = zi(t) − zd(t) ∈ �2

is at least UUB, where zd(t) = (xd, yd)
T and the output vector zi(t) is defined as follows:

zi(t) = hi(pi(t)) = (
xi + ρd

i cos
(
ϕi + θd

i

)
, yi + ρd

i sin
(
ϕi + θd

i

))T
(9)

(ii) The velocity measurements of followers are not available for feedback in real time.
(iii) The robustness of formation controller can be guaranteed in the presence of uncertain dynamics

and environmental disturbances.
(iv) The controller design takes the actuator saturation problem into account for all agents to avoid

a poor tracking performance in the transient response during formation construction.

Assumption 1. The reference trajectory is generated by the virtual leader whose motion equa-
tions are given by (1) and (6) such that the leader states and derivatives, including pd, vd, v̇d and
accordingly ṗd and p̈d, are bounded and available signals for all followers.

Assumption 2. The desired formation vector qd
i = (ρd

i , θd
i )T is chosen such that qd

i (t), q̇d
i (t), and

q̈d
i (t) are bounded. Thus, Sup

t≥0
‖qd

i (t)‖ < βdpi , Sup
t≥0

‖q̇d
i (t)‖ < βdvi , and Sup

t≥0
‖q̈d

i (t)‖ < βdai, where βdpi,

βdvi, and βdai are unknown positive constants.
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Assumption 3. The positions and orientations of all followers are measurable in real time.
However, their velocity measurements are not available for feedback.

Remark 1. Since this paper ignores the collision avoidance problem between the followers, the
leader is considered to be virtual, and each robot only needs the virtual leader states and its own
information; the communication between all robots is not considered in this paper, and our main
focus is design of the controller and its stability proof in the next section.

Remark 2. As proved in refs. [31] and [32], the internal dynamics of a WMR is stable in moving
forward, but it is unstable when moving backward.

Remark 3. If at least one constraint is nonholonomic, it suggests that the system is not input
state linearizable. However, it may be input–output linearizable by choosing a proper set of output
equations as (9).28, 33, 34

2.5. WMR formation input–output model
The basic way to obtain an input–output model is differentiating the outputs repeatedly to make an
explicit relation with inputs. By differentiating (9) and considering (8), one obtains:

żi = Lfi hi(xi) + Lqi hi(xi) + Lgi hi(pi)uai + L�i hi(pi) = Ji(pi)vi (10)

where Lfi hi(xi) = ∇hifi, Lqi hi(xi) = ∇hiqi, Lgi hi(xi) = ∇higi, and L�i hi(xi) = ∇hi�i denote the Lie
derivatives of hi along the direction of the vectors fi, qi, gi, and �i, respectively,30 and ∇hi represents
the gradient of hi, Ji(pi) = Jhi(pi)Gi(pi), where Jhi(pi) = ∂hi(pi)

/
∂pi denotes the Jacobian matrix.

As is clear from (10), the output is not related to the actuator input. By differentiating again, it yields:

z̈i = L2
fi hi(xi) + Lqi

Lfi hi(xi) + L�i Lfi hi(pi) + Lgi Lfi hi(pi)uai (11)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L2
fi
hi(xi) = ∂(Jhi(pi)Gi(pi)vi)

/
∂piGi(pi)vi

Lqi Lfi hi(xi) = −Jhi(pi)Gi(pi)M̄
−1
i C̄i(pi, ṗi)vi

L�i Lfi hi(pi) = −Jhi(pi)Gi(pi)M̄
−1
i

(
F̄i( ṗi) + τ̄di

)
Lgi Lfi hi(pi) = Jhi(pi)Gi(pi)K1iM̄

−1
i B̄i

(12)

where Lgi Lfi hi(pi) := Di(pi) is introduced as the decoupling matrix. With the assumption
det(Di(pi)) �= 0, the systems (8) and (9) are input–output linearizable.

3. Main Results

3.1. Nonlinear control law design and RBF NN approximator structure
In this section, the input voltage vector uai is designed as a nonlinear control law for applying to the
inner loop feedback as follows:

uai = D̂−1
i (pi)

(
ηi − L2

fi hi(xi)
)

(13)

where ηi ∈ �2 represents the new external input vector. Due to the fact that the decoupling matrix
Di(pi) includes unknown parameters, it is replaced by its estimation D̂i(pi) according to the certainty
equivalence principle. By substituting (13) into (11), the following expression is obtained:

z̈i = ηi + Lqi
Lfi hi(xi) + L�i

Lfi hi(pi) + (
Di(pi)D̂

−1
i (pi) − I

)(
ηi − L2

fi hi(xi)
)

(14)

The RBF NN is used to approximate the terms of nonlinear parametric uncertainties in (14), including
the mass, moment of inertia, and actuator parameters,29 which are employed below for the following
nonlinearity:

ni(xi) = Lqi
Lfi hi(xi) + (

Di(pi)D̂
−1
i (pi) − I

)(
ηi − L2

fi hi(xi)
)

(15)
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Then, there exists an RBF NN with three layers and l nodes for a given continuous function ni(xi) :
�5 → �2 as n̂i

(
xi

∣∣Ŵi
)= ŴT

i ξi(xi) such that

Ŵi =
(

ŵT
1,i 01×l

01×l ŵT
2,i

)T

(16)

where Ŵi is the weight matrix, including adjustable parameters ŵk,i =
(
ŵk1,i, ŵk2,i, . . . , ŵkl,i

)T
, k =

1, 2 that can be updated by an adaptive law, which will be defined in the next section; ξi(xi) =
(ξT

1,i(xi), ξT
2,i(xi))

T with ξk,i(xi) = (ξk1,i(xi), ξk2,i(xi), . . . , ξkl,i(xi))
T , k = 1, 2 is a neural basis function

vector, which is fixed a priori by the designer:

ξkj,i(xi) = exp
(−‖xi − μkj,i‖2/c2

kj,i

)
, j = 1, 2, . . . , l (17)

where ξkj,i(xi) is jth Gaussian basis function, and μkj,i and ckj,i are the center and width of the Gaussian

function, respectively. It is considered that xi and Ŵi belong to compact sets 
xi ⊂ �5 and 
Wi ⊂ Rl,
respectively. The ideal constant weight vector W∗

i is introduced as:

W∗
i = arg min

Ŵi∈
Wi

{
sup

xi∈
xi

∣∣ni(xi) − n̂i
(
xi

∣∣Ŵi
)∣∣} (18)

Here, Ŵi shows the estimation of W∗
i . The neural estimation error is defined as εi(xi) = ni(xi) −

n̂i(xi

∣∣W∗
i ). The nonlinear parametric uncertainty ni is written as ni(xi) = W∗T

i ξi(xi) + εi. Then, (15)
is rewritten as follows:

z̈i = ηi + W∗T

i ξi(xi) + α∗
i (19)

where α∗
i = L�i Lfi hi(pi) + εi includes nonparametric uncertainties. Assuming that ‖L�i Lfi hi(pi)‖ ≤

β�i and ‖εi‖ ≤ βεi , the term α∗
i can be bounded as ‖α∗

i ‖ ≤ α∗
Mi

, where α∗
Mi

= β�i + βεi .

Assumption 4. The ideal NN weights are bounded such that ‖Ŵi‖ ≤ WMi , where WMi is an
unknown positive constant.

3.2. High-gain velocity observer design
In real-world applications, the output position vector, including the robot position and heading, can
be measured using a global or local sensor. However, the robot velocity vector is difficult to be
measured. Therefore, the high-gain observer is employed in this paper to provide the estimation of
the velocity vector in the presence of uncertain dynamics and unknown disturbances to implement
the output feedback control system.

Lemma 1. [25, 35] Suppose the system output zi(t) and its first n − 1 derivatives are bounded,
that is, |z(r)

i | < Zri, (r = 0, 1, . . . , n − 1) with positive constants Zri. Consider the following linear
system: {

δiπ̇qi = π(q+1)i, q = 1, 2, . . . , n − 1
δiπ̇ni = −γ1iπni − γ2iπ(n−1)i − · · · − γ(n−1)iπ2i − π1i + zi(t)

(20)

with δi being a small positive constant, and the parameters γ1i, . . . , γ(n−1)i are chosen such that the
polynomial sn + γ1isn−1 + · · · + γ(n−1)is + 1 is Hurwitz. Then, the following properties hold:

(1) π(r+1)i/δ
r
i − z(r)

i = −δiϕ̄
(r+1)
i , r = 0, 1, . . . , n − 1

where ϕ̄i = πni + γ1iπ(n−1)i + · · · + γ(n−1)iπ1i and ϕ̄
(r)
i denotes the rth derivative of ϕ̄i.

(2) There exist positive constants t∗ and βri only depending on Z(r−1)i(r = 1, 2, . . . , n), δi, and
γqi(q = 1, . . . , n − 1), such that

∣∣ϕ̄(r)
i

∣∣≤ βri for all t > t∗.

Remark 4. Note that π(r+1)i
/
δr

i asymptotically converges to z(r)
i , if zi and its first rth derivatives

are bounded. Hence, π(r+1)i
/
δr

i for (r = 0, 1, . . . , n − 1) is a suitable observation to provide the
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estimations of the unmeasured output derivatives up to (n − 1)th order. Moreover, Eq. (20) only
depends on the available output signals of the system, and it does not include any information about
the mathematical model of the system with unavailable state variables. These advantages cause the
high-gain observer to be attractive in the output feedback control design for a class of nonlinear
systems with available output, uncertain dynamics, and unknown disturbances.

We can construct the high-gain observer for the formation tracking control of robots as follows:

δiπ̇1i = π2i, (21)
δiπ̇2i = −γ1iπ2i − π1i + zi(t), (22)

where π1i, π2i ∈ �2 are the state vectors of the high-gain observer. Then, the estimations of zi(t)
and its first derivative żi(t) are presented by:

ẑi = zi = π1i, ˙̂zi = π2i/δi (23)

According to (10) and (23), the velocity estimation of each mobile robot is obtained by

v̂i = J−1
i (pi)(π2i/δi) (24)

Regarding (24) and item 1 of Lemma 1, one achieves:

˙̂zi − żi = π2i/δi − żi = −δi ¨̄ϕi (25)

where ϕ̄i = π2i + γ1iπ1i. Furthermore, from (25) and item 2 of Lemma 1, one gains:∥∥˙̂zi − żi

∥∥= δi

∥∥ ¨̄ϕi

∥∥≤ δiβ2i (26)

3.3. Proposed controller and stability analysis
In this section, an adaptive robust neural output feedback formation controller is designed based on
the high-gain observer. When velocity measurements are available, the following filtered tracking
error-like signal efi(t) ∈ �2 is defined to design the controller:

efi(t) = ėi(t) + �pi Tanh(ei) (27)

The hyperbolic tangent function is used to bound the tracking error variable. This technique helps us
reduce the risk of actuator saturation effectively. Then, the following error dynamics is obtained:

ėfi(t) = ηi + W∗T

i ξi(xi) + α∗
i − z̈d(t) + �pi Sech2(ei)ėi (28)

where α∗
i is defined in (19). Since ėi is not available without velocity measurements, the filtered

tracking error-like signal, that is, efi(t), is replaced by its estimate as follows, by employing (23):

êfi(t) = ˙̂ei(t) + �pi Tanh(ei) = π2i(t)/δi − żd(t) + �pi Tanh(ei) (29)

Then, a neural adaptive robust Proportional Derivative (PD)-like controller is proposed based on the
high-gain observer (21) and (22) as follows:

ηi = z̈d(t) − kpi êfi(t) − �pi Sech2(ei) ˙̂ei − ŴT
i ξi(x̂i) − H(êfi)α̂Mi, (30)

where the elements of Ŵi and α̂Mi are updated by the following adaptive rules:

˙̂wk,i = γWk,iξk,i(x̂i)êfk,i − σWk,iγWk,i ŵk,i, (31)

˙̂αMi = γαi Hi(êfi)êfi − γαi
i
(
α̂Mi − α0

Mi

)
, (32)

where γWk,i(k = 1, 2) and γαi denote adaptive gains, σWk,i (k = 1, 2) is a design constant, and 
i =
diag(ω1,i, ω2,i) is a positive definite matrix. Hi(êfi) = diag(tanh(êf1,i

/
εα1,i), tanh(êf2,i

/
εα2,i)) where

εαk,i > 0 (k = 1, 2) is used as a robust term. The design constant vector α0
Mi

= (
α0

M1,i
, α0

M2,i

)T
is defined

with α0
Mk,i

> 0, k = 1, 2. Main results of this paper are summarized by the following theorem:
Main theorem: Consider the motion equations of WMRs, which are given by (1)–(2). Given a

bounded continuous desired trajectory, under Assumptions 1–4 and Lemma 1 and Eqs. (13), (16),
(21), (22), and (29)–(32), the neural high-gain observer-based controller, derived below,
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uai = D̂−1
i (pi)

(
z̈d(t) − kpi êfi(t) − �pi Sech2(ei) ˙̂ei − ŴT

i ξi(x̂i) − H(êfi)α̂Mi − L2
fi
hi(xi)

)
,

Ŵi =
(

ŵT
1,i 01×l

01×l ŵT
2,i

)T

, ˙̂wk,i = γWk,iξk,i(x̂i)êfk,i − σWk,iγWk,i ŵk,i,

˙̂αMi = γαi Hi(êfi)êfi − γαi
i
(
α̂Mi − α0

Mi

)
,

êfi(t) = ˙̂ei(t) + �pi Tanh(ei), ˙̂ei(t) = π2i(t)/δi − żd(t),

δiπ̇1i(t) = π2i(t), δiπ̇2i(t) = −γ1iπ2i(t) − π1i(t) + zi(t),

(33)

ensures that all robots track a desired formation such that tracking and observation errors are UUB
and converge to a small ball containing the origin.

Proof. Consider the Lyapunov function V(t) =
N∑

i=1
Vi(t) for the overall formation system such that

Vi(t) = 0.5eT
fi efi +

2∑
j=1

δpj,i Ln cosh(ej,i) +
2∑

k=1

0.5w̃T
k,iw̃k,i/γWk,i + 0.5α̃T

Mi
α̃Mi/γαi, (34)

where α̃Mi = α̂Mi − α∗
Mi

and w̃k,i = ŵk,i − w∗
k,i are the parameter and weight estimation errors,

respectively. The time derivative of (34) along (27) and (28) leads to:

V̇i(t) = eT
fi

(
ηi + W∗T

i ξi(xi) + α∗
i − z̈d(t) + �pi Sech2(ei)ėi

)+ TanhT(ei)�pi efi(t)

−TanhT(ei)�
2
pi

Tanh(ei) +
2∑

k=1
w̃T

k,i
˙̂wk,i/γWk,i + α̃T

Mi
˙̂αMi/γαi

(35)

By substituting (30) into (35) and using (31) and (32), one obtains:

V̇i(t) = −eT
fi
kpi êfi(t) − eT

fi

(
ŴT

i ξi(x̂i) − W∗T

i ξi(xi)
)− eT

fi
(Hi(êfi)α̂Mi − α∗

i )

−eT
fi
�pi Sech2(ei)ẽfi + TanhT(ei)�pi efi(t) − TanhT(ei)�

2
pi

Tanh(ei)

+
2∑

k=1
w̃T

k,iξk,i
(x̂i)êfk,i

−
2∑

k=1
σwk,i w̃

T
k,iŵk,i + α̃T

Mi

(
Hi(êfi)êfi − 
i

(
α̂Mi − α0

Mi

)) (36)

where ẽfi (t) = êfi(t) − efi(t) = ˙̂zi(t) − żi(t), which is bounded by (26). Regarding the bounded
Gaussian function in this paper, it is assumed that ‖ξk,i(x̂i)‖ ≤ qk,i (k = 1, 2) with constants qk,i > 0.
Therefore, according to Young’s inequality and the property ξk,i(x̂k,i) − ξk,i(xk,i) = δiStk,i , where Stk,i

is a bounded vector function,35 one gets:

−eT
fi

(
ŴT

i ξi(x̂i) − W∗T

i ξi(xi)
)+

2∑
k=1

w̃T
k,iξk,i

(x̂i)êfk,i
= −eT

fi

(
W̃T

i + W∗T

i

)
ξi(x̂i)

+eT
fi
W∗T

i ξi(xi) + êT
fi
W̃T

i ξi(x̂i)

= ẽT
fi
W̃T

i ξi(x̂i) − eT
fi
W∗T

i (−δiSti) =
2∑

k=1
w̃T

k,iξk,i
(x̂i)ẽfk,i

+
2∑

k=1
w∗T

k,iδiStk,i efk,i

≤
2∑

k=1

(‖w̃T
k,i‖ · ‖ξ

k,i
(x̂i)ẽfk,i

‖)+
2∑

k=1
w∗T

k,iδiStk,i efk,i
≤

2∑
k=1

( σwk,i

4 ‖w̃k,i‖2 + qk,i

σwk,i
‖ẽfk,i

‖2
)

+
2∑

k=1
w∗T

k,iδiStk,i efk,i

≤
2∑

k=1

σwk,i

4 ‖w̃k,i‖2 + 1
2 ẽT

fi
�fi ẽfi

+ 1
2 eT

fi
efi

+ 1
2

2∑
k=1

(
δ2

i ‖Stk,i‖2‖w∗
k,i‖2

)

(37)

where �fi = diag(2q1,i
/
σw1,i, 2q2,i

/
σw2,i). By considering (32), one obtains:

−eT
fi
(Hi(êfi)α̂Mi − α∗

i ) + α̃T
Mi

(
Hi(êfi)êfi − 
i

(
α̂Mi − α0

Mi

))
=

2∑
k=1

(
efk,iα

∗
Mk,i

− efk,i tanh
(

êfk,i

εαk,i

)
α̂Mk,i

+ êfk,i tanh
(

êfk,i

εαk,i

)
α̃Mk,i

)
−

2∑
k=1

ωk,i α̃Mk,i

(
α̂Mi − α0

Mi

)
≤

2∑
k=1

(
|efk,i |α∗

Mk,i
− efk,i tanh

(
êfk,i

εαk,i

)
α̂Mk,i

+ êfk,i tanh
(

êfk,i

εαk,i

)
α̃Mk,i

)
−

2∑
k=1

ωk,i α̃Mk,i

(
α̂Mi − α0

Mi

) (38)
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Considering the following property of the hyperbolic tangent function,36

0 ≤ |χ | − χ tanh(χ/a) ≤ 0.2785a, ∀a > 0, χ ∈ � (39)

and
∣∣tanh(êfi

/
εαi)

∣∣< 1, one achieves:

|efk,i |α∗
Mk,i

− efi tanh
(

êfk,i

εαk,i

)
α̂Mk,i

+ êfk,i tanh
(

êfk,i

εαk,i

)
α̃Mk,i

= |êfk,i − ẽfk,i |α∗
Mk,i

+ ẽfk,i tanh
(

êfk,i

εαk,i

)
α̂Mk,i

− êfk,i tanh
(

êfk,i

εαk,i

)
α∗

Mk,i

≤ |êfk,i |α∗
Mk,i

− êfk,i tanh
(

êfk,i

εαk,i

)
α∗

Mk,i
+ |ẽfk,i |α∗

Mk,i
+ ẽfk,i tanh

(
êfk,i

εαk,i

)
α̂Mk,i

≤ 0.2785εαk,iα
∗
Mk,i

+ |ẽfk,i |α∗
Mk,i

+ ẽfk,i tanh
(

êfk,i

εαk,i

)
α̃Mk,i

+ ẽfk,i tanh
(

êfk,i

εαk,i

)
α∗

Mk,i

≤ 0.2785εαk,iα
∗
Mk,i

+
∣∣ẽfk,i

∣∣2
+α∗2

Mk,i

2 +
∣∣ẽfk,i

∣∣2
+α̃2

Mk,i

2 +
∣∣∣ẽfk,i

∣∣∣2+α∗2
Mk,i

2

= 0.2785εαk,iα
∗
Mk,i

+ 3
2

∣∣ẽfk,i

∣∣2 + α∗2

Mk,i
+ 1

2 α̃2
Mk,i

(40)

Moreover, it is easy to write the following relation:

−ωk,i α̃Mk,i

(
α̂Mi − α0

Mi

)= − 1
2ωk,i α̃

2
Mk,i

− 1
2ωk,i(α̂Mi − α0

Mi
)2 + 1

2ωk,i

(
α∗

Mi
− α0

Mi

)2

≤ − 1
2ωk,i α̃

2
Mk,i

+ 1
2ωk,i

(
α∗

Mi
− α0

Mi

)2 (41)

By substituting (40) and (41) into the right-hand side of (38), one obtains:

−eT
fi
(Hi(êfi)α̂Mi − α∗

i ) + α̃T
Mi

(
Hi(êfi)êfi − 
i

(
α̂Mi − α0

Mi

))
≤

2∑
k=1

(
0.2785εαk,iα

∗
Mk,i

+ 3
2

∣∣ẽfk,i

∣∣2 + α∗2

Mk,i
+ 1

2 α̃2
Mk,i

)
+

2∑
k=1

(
− 1

2ωk,i α̃
2
Mk,i

+ 1
2ωk,i

(
α∗

Mi
− α0

Mi

)2
)

= 0.2785�T
i α∗

Mi
+ 3

2

∣∣ẽfi

∣∣2 + ‖α∗
Mi

‖2 + 1
2‖α̃Mi

‖2 − 1
2 α̃T

Mi

iα̃Mi

+ 1
2

(
α∗

Mi
− α0

Mi

)T

i

(
α∗

Mi
− α0

Mi

) (42)

where �i = (εα1,i, εα2,i)
T . By taking the following inequality into account

2w̃T
k,iŵk,i = ‖w̃k,i‖2 + ‖ŵk,i‖2 − ‖w∗

k,i‖2 ≥ ‖w̃k,i‖2 − ‖w∗
k,i‖2, (43)

one obtains:

−
2∑

k=1

σwk,i w̃
T
k,iŵk,i ≤

2∑
k=1

σwk,i

2
‖w∗

k,i‖2 −
2∑

k=1

σwk,i

2
‖w̃k,i‖2 (44)

Considering ẽfi (t) = ˙̂zi − żi, (26), ‖Sech2(ei)‖ < 1, and Young’s inequality, we have:∥∥ẽT
fi ẽfi

∥∥= ‖ẽfi (t)‖2 = ∥∥˙̂zi − żi

∥∥2 ≤ δ2
i β

2
2i (45)

−eT
fi
kpi êfi = −eT

fi
kpi(ẽfi

+ efi
) ≤ 1

2‖efi
‖2 + 1

2λmax
{
kT

pi
kpi

}‖ẽfi
‖2 − eT

fi
kpi efi

≤ 1
2‖efi

‖2 + 1
2λmax

{
kT

pi
kpi

}
δ2

i β
2
2i − λmin{kpi}‖efi

‖2
(46)

−eT
fi
�pi Sech2(ei)ẽfi (t) ≤ ‖efi

‖.‖�pi‖.‖Sech2(ei)‖.‖ẽfi (t)‖
≤ 1

2λmax{�pi}‖efi
‖2 + 1

2λmax{�pi}‖ẽfi (t)‖2 ≤ 1
2λmax{�pi}‖efi

‖2 + 1
2λmax{�pi}δ2

i β
2
2i

(47)

TanhT(ei)�pi efi ≤
1

2
λmax{�pi}‖Tanh(ei)‖2 + 1

2
λmax{�pi}‖efi‖2 (48)

− TanhT(ei)�
2
pi

Tanh(ei) ≤ −λmin{�2
pi
}‖Tanh(ei)‖2 (49)
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Substituting (37), (42), and (44)–(49) into (36) and changing the arrangement, it yields:

V̇i ≤ −(λmin{kpi − I2} − λmax{�pi
})‖efi‖2 − (λmin{�2

pi
} − 1

2λmax{�pi
})‖Tanh(ei)‖2

− min
i=1,2

{ σwk,i

4

}‖w̃k,i‖2 − λmin{
i}−1
2 ‖α̃Mi

‖2 + 1
2

2∑
k=1

(δ2
i ‖Stk,i‖2 + σwk,i)‖w∗

k,i‖2

+‖α∗
Mi

‖2 + 0.2785�T
i α∗

Mi
+ 1

2

(
α∗

Mi
− α0

Mi

)T

i

(
α∗

Mi
− α0

Mi

)
+ 1

2

(
λmax

{
kT

pi
kpi

+ �fi
+ �pi

}+ 3
)
δ2

i β
2
2i

(50)

The inequality (50) is re-written as follows:

V̇i(t) ≤ −cmi‖xti‖2 + μi, (51)

where xti , cmi , and μi are given by

xti =
(
eT

fi , TanhT(ei), w̃T
1,i, w̃T

2,i, α̃Mi

)T
(52)

cmi = min

{
λmin{kpi − I2} − λmax{�pi

}, λmin
{
�2

pi

}− 1

2
λmax

{
�pi

}
, min

i=1,2

{σwk,i

4

}
,
λmin{
i} − 1

2

}
(53)

μi = 1
2

∑2
k=1(δ

2
i ‖Stk,i‖2 + σwk,i)‖w∗

k,i‖2 + ‖α∗
Mi

‖2 + 0.2785�T
i α∗

Mi

+ 1
2

(
α∗

Mi
− α0

Mi

)T

i

(
α∗

Mi
− α0

Mi

)+ 1
2

(
λmax

{
kT

pi
kpi + �fi

+ �pi

}+ 3
)
δ2

i β
2
2i

(54)

Regarding (53), the design matrices kpi and 
i should satisfy:

λmin{kpi − I2} > λmax{�pi
} , λmin

{
�2

pi

}
> 0.5λmax{�pi

} , λmin{
i} > 1 (55)

Then, inequality (53) can be expressed as follows for the overall formation system:

V̇(t) ≤
N∑

i=1

(−cmi‖xti(t)‖2 + μi) ≤ −cmin‖xt(t)‖2 + μ, (56)

where xt(t) = (xT
t1, xT

t2, . . . , xT
tN )T , cmin = min{cmi}

∣∣N
i=1, and μ =∑N

i=1 μi. Thus, if the condition (55)

is satisfied, V̇(t) is strictly negative outside the compact set 
xt = {xt(t)| 0 ≤ ‖xt(t)‖ ≤
√

μ
/

cmin},
which means that V(t) is decreasing outside the set 
xt . It proves ‖xt(t)‖ is UUB, which implies that
tracking and observation errors, NN weights, and parameter estimation errors exponentially converge
to a small ball containing origin. This completes the proof.

3.4. Discussion on controller gain tuning

It is clear from (53) and (54) that
√

μ
/

cmin can be provided as small as required by appropriately
choosing the positive definite design matrices kpi , �pi , and 
i, and positive design constants δi, γWk,i ,
σwk,i , γαi , and εαk,i (k = 1, 2), satisfying (55). One may use the following tuning rules to adjust control
parameters properly: (i) the inverse relationship between the size of ultimate bound μ

/
cmin and

gain �pi can be seen from (53), as cmi tends to increase with λmin{�2
pi
} − 0.5λmax{�pi}. We do not,

however, see the same analytical relationship for kpi , as μi depends on kpi . Therefore, the larger value
of �pi and smaller value of δi decrease μi, which reduces the size of ultimate bound μ

/
cmin and

improves convergence rate and final tracking accuracy; (ii) the large values of adaptive gains, that is,
γWk,i and γαi in (31) and (32), lead to a better final tracking accuracy. However, a larger adaptive gain
γαi may cause more robust control actions, which generate control signal chattering; (iii) smaller
values of σwk,i and 
i decrease the value of μi in (54), which leads to a smaller ultimate bound
μ
/

cmin and better final tracking accuracy. However, decreasing σwk,i and 
i may lower robustness of
parameter update rules in (31) and (32); (iv) one may compromise between final tracking accuracy
and smoothness of control signals by tuning of the boundary layer thickness εαk,i . The proposed
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Fig. 3. A block diagram of the proposed NN control system.
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Fig. 4. The desired leader–follower formation configuration.

controller can be made smoother, and it prevents actuator chattering and saturation by selecting larger
values for εαk,i . However, larger values of εαk,i increases the value of μi in (54), which may result in
a larger ultimate bound μ

/
cmin and decrease final tracking accuracy. It should be mentioned that the

control parameters will be adjusted by a trial-and-error method based on the proposed gain-tuning
rules. Figure 3 demonstrates a block diagram of the proposed output feedback formation controller.

4. Numerical Examples

4.1. Simulation results
In this section, some computer simulations are performed to demonstrate the effectiveness and
efficiency of the proposed formation controller for a group of four identical WMRs based on the
high-gain observer with saturating actuators. All the simulations are performed in MATLAB soft-
ware in a computer whose processor is an Intel Core i7 with 2 GHz frequency and 6 GB RAM.
Simulations are carried out based on Euler approximation with a sampling time of 20 ms. By adding
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Fig. 5. Simulation results of circle trajectory formation tracking: (a) x–y plot, (b) tracking errors, (c) control
signals, (d) velocity estimation errors, (e) norm of weight estimates, and (f) alpha estimates.

a zero-mean Gaussian white noise to the measured signals, including positions and orientation using
randn(•) function, real sensors are simulated. The standard deviations of the robot positions and
orientation noise are selected as 0.003 m and 0.005 rad, respectively, for this simulation. It is also
assumed that the robots employ a similar localization system.37, 38 It is supposed that the slippages of
robot wheels are insignificant for simplicity in this paper.

To simulate nonparametric uncertainties such as friction, unmodeled dynamics, and environmental
disturbances, the following models are chosen:

Fi( ṗi) = 0.5(v1,i, v2,i)
T + 0.8(sgn(v1,i), sgn(v2,i))

T (57)

τdi = 2(sin(0.05t), sin(0.05t))T (58)

The physical parameters of each mobile robot are chosen as bi = 0.4 m, di = 0.1 m, mci =
10 kg, mwi = 0.5 kg, Ici = 3 kg · m2, Imi = 0.006 kg · m2, and ri = 0.25 m. In order to evaluate
the robustness of the proposed controller, it is assumed that all of the model parameters are
unknown. The parameters for actuator dynamics are chosen as ni = 62.55, Rai = 1.6 
, Lai = 0.48



www.manaraa.com

82 High-gain observer-based control of mobile robots

–5 0 5 10
–10

–8

–6

–4

–2

0

2

4

6

8

10

X(m)

Y
(m

)

F2
F1 F3

F4

(a)

0 5 10 15 20
–2

–1

0

1

Time(s)

e 1 
(m

)

0 5 10 15 20
–1

0

1

Time(s)

e 2 
(m

)

(b)

0 5 10 15 20
–40
–20

0
20
40

Time(s)

ua
1 

(V
)

0 5 10 15 20
–40
–20

0
20
40

Time(s)

ua
2 

(V
)

(c)

Fig. 6. Simulation results of the controller: (a) x–y plot, (b) tracking errors, and (c) control signals.


s, Kbi = 0.019 V
/

rad
/

s, and Kτi = 0.2639 oz − in
/

A. The controller gains are adopted as δi =
0.04, γ1i = 2, kpi = 10I2, �pi = 5I2, γαi = 2, ω1,i = 10−5, ω2,i = 10−15, εα1,i = 0.08, and εα2,i =
0.075. In addition, a three-layer NN with 13 hidden nodes, 2 output nodes, and the parame-
ters γW1,i = 10, γW2,i = 15, σw1,i = σw2,i = 10−5, ck,i = 5(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T(k = 1, 2),
μk,i = (−6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6)T(k = 1, 2) are designed for the control system.
The initial conditions α0

Mi
= 02×1, ŵ1,i(0) = 0l×1, ŵ2,i(0) = 0l×1, π1i(0) = 02×1, π2i(0) = 02×1 are

considered. Moreover, the velocities of all followers are initially set to zero. The planar configu-
ration of the desired formation of the followers with respect to the leader is shown by Fig. 4. In this
figure, four followers are denoted by Fi, i = 1, 2, 3, 4. The desired formation vectors are chosen as
qd

1(t) = (1.5m, −45◦)T , qd
2(t) = (3m, −60◦)T , qd

3(t) = (1.5m, 45◦)T , and qd
4(t) = (3m, 60◦)T .

Three simulation scenarios are carried out based on the mentioned controller settings to demon-
strate the effectiveness of the proposed formation controller.

Scenario 1: The open-loop control command for the virtual leader vehicle, which gen-
erates the circle trajectory, is set to uad = (0.9V, 1V)T . The initial positions and orientations
of all followers and the virtual leader are represented as p1(0) = (−4 m, 2 m, 0 rad)T , p2(0) =
(−4 m, 4m, 0rad)T , p3(0) = (−4 m, −2 m, 0 rad)T , p4(0) = (−4 m, −4 m, 0 rad)T , and pd(0) =
(0m, 0 m, 0 rad)T , respectively. The simulation results are plotted in Fig. 5(a)–(f). As shown in Fig.
5(a), all followers nicely track their reference trajectory with a satisfactory performance, despite
time-varying disturbance. Figure 5(b) shows that output values z1,i and z2,i arrive at the desired target
value zd = (0m, 0 m)T in 2 s. As depicted by Fig. 5(c), the control signals remain within

∣∣uai

∣∣≤ 24V,
which we have set as the saturation limit. It is clear from Fig. 5(d) that the high-gain observer esti-
mates converge to the output derivatives. The estimates peak at their relative saturation values in 0.8 s,
and then converge to the actual output derivatives. As seen in Fig. 5(e), the norms of approximation
weights are bounded. The estimated parameters of the upper bound for nonparametric uncertainty
are shown by Fig. 5(f).

Scenario 2: The following desired trajectory zd(t) = (xd, yd)
T is chosen to evaluate controller

performance: {
xd = xg + R0 cos(ω0t) + R1 cos(4ω0t),
yd = yg + R0 sin(ω0t) + R1 sin(4ω0t),

(59)

where xg = 2.5, yg = 0, R0 = 6, R1 = 1, and ω0 = 0.05. The initial postures of followers are
set as p1(0) = (8 m, 0 m, π

/
2 rad)T , p2(0) = (7 m, −1m, π

/
2rad)T , p3(0) = (11 m, 0 m, π

/
2 rad)T ,

andp4(0) = (12m, −1 m, π
/

2 rad)T . As shown in Fig. 6(a)–(c), the proposed controller successfully
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Table II. Quantitative comparison of the controller in ref. [26] and the proposed controller.

Controller in ref. [26] Proposed controller

Performance index Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

rms(e1,i(t)) (m) 0.2073 0.3268 5.6391 0.1945 0.1888 3.0595
rms(e2,i(t)) (m) 0.0645 0.0674 3.2101 0.0403 0.1945 1.5396
rms(ua1,i(t)) (V) 3.4137 4.8544 24.8865 1.9691 4.4967 14.7200
rms(ua2,i(t)) (V) 4.3274 10.8286 49.2354 2.3261 8.6882 15.8506
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Fig. 7. Simulation results of the proposed controller for large initial tracking errors: (a) x–y plot, (b) tracking
errors, and (c) control signals.
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Fig. 8. Simulation results of the controller in [26] for large initial tracking errors: (a) x–y plot, (b) tracking
errors, and (c) control signals.

copes with the trajectory tracking problem in the presence of model uncertainties, environmental
disturbances, actuator constraints, and only position measurements.

Scenario 3: It is proven that the proposed controller meets all of the determined control
objectives. Therefore, this scenario is carried out for very large initial tracking errors to eval-
uate the capability of the proposed formation controller in the presence of actuator saturation.
Besides, it is of interest to compare this controller with the designed controller in ref. [26]
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from both qualitative and quantitative aspects. The initial postures of all followers are given
by p1(0) = (−40 m, 20 m, 0 rad)T , p2(0) = (−50 m, 10 m, 0rad)T , p3(0) = (−40 m, −20 m, 0 rad)T ,
and p4(0) = (−50m, −10 m, 0rad)T . The simulation results are depicted in Fig. 7(a)–(c). It is clear
that the formation tracking mission is successful and actuator saturation is effectively prevented in
spite of the large initial postures of the vehicles, while the amplitudes of control signals remain in∣∣uai

∣∣≤ 24V. Moreover, tracking errors smoothly converge to a small bound containing the origin.

4.2. A comparative study
In order to evaluate the effectiveness of the proposed controller, a controller similar to that used in
Du et al.26 is considered with the same presented adaptive laws as in (31) and (32):

uai = −J−1
i (pi)z1i − K2iẑ2i + ŴT

i ξi(x̂i) − Hi(ẑ2i)α̂Mi (60)

where z1i = zi − zd and z2i = vi − α1i are the outer and inner loop tracking errors, respectively. The
intermediate control function vector α1i for the virtual control vector vi is selected as:

α1i = −J−1
i (pi)K1iz1i (61)

The parameters of the controller are chosen as K1i = 2, K2i = 10, δi = 0.2, γ1i = 2,γαi = 10, ω1,i =
10−5, ω2,i = 10−15, εα1,i = 5, and εα2,i = 2. The NN gains are chosen similar to previous values for the
proposed controller in this paper. The initial conditions are set to zero. The simulation results for very
large initial tracking errors are provided by Fig. 8(a)–(c). As can be seen from comparing the results
of simulations, the proposed controller in this paper provides a smoother transient response than the
controller (60). In contrast, the controller (60) causes actuator saturation and its control signals are
not smoother than the proposed controller signals in this paper.

The following performance indexes are introduced as in refs. [39] and [40] for a fair comparative
study of the controllers in terms of quantity:

• The following root mean square of the tracking error is defined to evaluate the average tracking
performance:

rms(ej,i(t)) =
√

(1
/

Tf )

∫ Tf

0

∣∣ej,i(t)
∣∣2 dt, j = 1, 2 (62)

where Tf denotes the total running time and ej,i represents the tracking error for jth output.
• In order to measure the amount of control power consumption, the following rms of the control

signals is used to evaluate the amount of control efforts:

rms(uaj,i(t)) =
√

(1
/

Tf )

∫ Tf

0

∣∣uaj,i(t)
∣∣2 dt j = 1, 2 (63)

Table II shows the numerical values of the above performance indexes, which compare the con-
trollers from the viewpoint of average tracking performance and power consumption. It clearly shows
that the amount of control efforts for our proposed controller is smaller than that of the controller in
ref. [26]. A main conclusion from Table II is that the proposed controller is more effective than the
controller in ref. [26], especially for large initial tracking errors considering the actuator saturation.

5. Conclusion
In this paper, a NN-based leader–follower formation tracking control problem of nonholonomic
mobile robots is studied in the presence of actuator saturation and without velocity measurements.
The proposed control scheme only relies on the position and heading measurements of robots, and the
high-gain observer is designed to estimate unavailable velocities of all robots. In order to reduce the
risk of actuator saturation, hyperbolic tangent saturation functions are applied effectively to design
a formation controller that generates small-amplitude voltage input signals. Consequently, the tran-
sient performance of the proposed controller is improved for large initial tracking errors. Moreover,
the proposed controller can efficiently compensate both parametric and nonparametric uncertain-
ties without the requirement of a prior knowledge of the robot’s dynamics and environmental
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disturbances via an effective combination of RBF NNs and adaptive robust techniques. A Lyapunov-
based stability analysis is presented to guarantee UUB of formation tracking and observation errors.
Simulation results indicated the effectiveness of the proposed formation control scheme.
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